
Journal of Computational Physics168,286–315 (2001)

doi:10.1006/jcph.2001.6691, available online at http://www.idealibrary.com on

A Staggered Fourth-Order Accurate Explicit
Finite Difference Scheme for the Time-Domain

Maxwell’s Equations1

Amir Yefet and Peter G. Petropoulos

Department of Mathematical Sciences, New Jersey Institute of Technology,
University Heights, Newark, New Jersey 07102
E-mail: yefet@m.njit.edu, peterp@m.njit.edu

Received November 16, 1999; revised December 18, 2000

We consider a model explicit fourth-order staggered finite-difference method for
the hyperbolic Maxwell’s equations. Appropriate fourth-order accurate extrapolation
and one-sided difference operators are derived in order to complete the scheme near
metal boundaries and dielectric interfaces. An eigenvalue analysis of the overall
scheme provides a necessary, but not sufficient, stability condition and indicates long-
time stability. Numerical results verify both the stability analysis, and the scheme’s
fourth-order convergence rate over complex domains that include dielectric interfaces
and perfectly conducting surfaces. For a fixed error level, we find the fourth-order
scheme is computationally cheaper in comparison to the Yee scheme by more than
an order of magnitude. Some open problems encountered in the application of such
high-order schemes are also discussed.c© 2001 Academic Press

Key Words:Maxwell’s equations, staggered finite-difference schemes, fourth-
order schemes, FD-TD scheme.

1. INTRODUCTION

Many modern technology applications involve the propagation and scattering of transient
electromagnetic signals, e.g., electronic on-chip interconnects, nondestructive testing of
concrete structures, and aircraft radar signature analysis. The design and optimization of
new systems demands fast and accurate solvers of the time-domain Maxwell equations
over complex closed/open domains filled with heterogeneous dielectrics in which metals

1 Supported by AFOSR Grant F49620-99-1-0072 and AFOSR MURI Grant F49620-96-1-0039.

286

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.



FOURTH-ORDER FINITE-DIFFERENCE METHOD 287

are embedded. This is a challenge for numerical modelers as the relevant mathematical
problem to be solved generally exhibits disparate spatial (e.g., inhomogeneities with both
small- and large-scale features) and time (e.g., dispersive media) scales. A mini-review of
the computational electromagnetics (CEM) state of the art can be found in [1].

Thus far, Yee’s [2–3] finite-difference time-domain (FD-TD) algorithm has provided the
best [4] second-order accurate nondissipative direct solution of the time-domain Maxwell
equations on a staggered grid. The numerical error is controlled solely by the mesh size, and
the scheme is particularly easy to implement in the presence of heterogeneous dielectrics and
perfectly conducting (PEC) boundaries; it is second-order convergent for planar geometries,
where boundaries/interfaces occur on grid points. As all finite difference schemes, the Yee
scheme is dispersive and anisotropic, and for large-scale problems, or for problems requiring
long-time integration of Maxwell’s equations, errors from dispersion and anisotropy quickly
accumulate and become significant unless a fine discretization is used [6]. This leads to
prohibitive memory requirements and high computational cost when addressing real-world
problems.

For some time now, workers in CEM have realized the promise of high-order finite-
difference schemes [5–12]. The question of staggered versus unstaggered high-order
schemes has been studied in [13] which showed that, for a given order of accuracy, a
staggered scheme is more accurate and efficient than an unstaggered scheme. However, the
extended spatial stencil of staggered high-order methods has inhibited their wide accep-
tance as it does not allow the easy application of boundary conditions (far-field, impedance,
or metal) and the accurate modeling of dielectric interfaces. In this paper we revisit the
explicit(2, 4) scheme of [5], and we use it as a model to address some of the remaining ob-
jections to using high-order stencils on a staggered grid. Although it is possible to consider
a fourth-order time integrator with Fang’s spatial differencing, e.g. [18], we concentrate
on the particular (2, 4) scheme herein in order to introduce and study appropriate spatial
differencing techniques for bounded domains.

We adopt a domain-decomposition point of view and treat dielectric interfaces as bound-
ary points between subdomains in which the spatial derivatives are computed to fourth-order
accuracy; boundary data is imposed as in the Yee scheme. For the model fourth-order spa-
tial stencil, we propose a series of numerical boundary conditions, involving one-sided
differentiation and extrapolation/interpolation, to implement metal boundaries and dielec-
tric interfaces when these occur on electric field grid points. Where appropriate, we indicate
how to modify our scheme for the cases where the boundaries, or the dielectric interfaces,
occur on magnetic field grid points. Our approach is motivated by [15, 16], which con-
sidered the accurate treatment of dielectric interfaces for the second-order Yee scheme (a
similar approach for second-order schemes is developed in [17]). The treatment of metal
boundaries herein is different from that used in [6], where the method of images was ap-
plicable because of the infinite extent of those boundaries in the numerical tests performed
there. Also, the treatment of dielectric interfaces herein is different from that in [7], where
a simple pointwise specification of dielectric properties was used; we show that such an
approach severely degrades the convergence rate of the scheme. A stability analysis, which
includes the effects of metal boundaries and dielectric interfaces, is given. We find the nec-
essary CFL stability condition derived in [5] also holds when metal boundaries are present,
while problems with dielectric interfaces require a slightly smaller CFL number which we
determine for a given mesh size and dielectric contrast. For the model scheme herein this is
not overly restrictive as one typically chooses a CFL number proportional to the mesh size
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in order to compute fourth-order accurate results. Numerical experiments show that these
new numerical boundary conditions preserve the fourth-order accuracy of the scheme when
boundaries/interfaces occur on grid points. We also examine the effect of stair-stepping a
boundary not aligned with the grid, and of the presence of geometric singularities.

2. PRELIMINARIES

The Maxwell equations in an isotropic, homogeneous, nondispersive medium are

∂B
∂t
+∇ × E = 0 (Faraday’s Law),

∂D
∂t
−∇ × H = 0 (Ampere’s Law),

(1)
B = µH,

D = εE.

In the absence of impressed electric charge, the magnetic induction and electric displacement
fields satisfy the constraints (Gauss’s law):

∇ · B = 0,
(2)

∇ · D = 0.

Scattering obstacles will be modeled by a spatial variation ofε andµ. In free space,ε and
µ are constant, equal to their minimum valuesε0, µ0. The speed of light in free space is
c = 1√

ε0µ0
.

To simplify the notation we will mainly consider two-dimensional problems. In two
dimensions, (1) decouples into two independent sets of equations, each representing a
distinct polarization. We shall use as our model system of equations those of the transverse
magnetic (TM) polarization, where the electric field is a scalar while the magnetic field is
a plane vector,

∂Ez

∂t
= 1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
,

∂Hx

∂t
= − 1

µ

∂Ez

∂y
, (3)

∂Hy

∂t
= 1

µ

∂Ez

∂x
.

Because the fields have noẑ-dependence, Gauss’ Law is trivially satisfied byD= (0, 0,
εEz)

T , while the magnetic fields are constrained to satisfy∇ · (µHx, µHy, 0)T = 0 for all
time. Wave excitation is achieved by imposing appropriate initial and/or boundary con-
ditions. We will present numerical examples for dielectrics with (a) piecewise-constant
ε (µ = µ0), and (b) piecewise-constantµ (ε= ε0). Case (b) can be thought (duality) to rep-
resent the transverse electric (TE) polarization problem for a dielectric of piecewise-constant
ε and fixedµ = µ0. The extension of the work herein to the more general three-dimensional
problem (1) is straightforward.
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3. THE SCHEME IN A HOMOGENEOUS BOUNDED DIELECTRIC

The discretization of (3) with the staggered Yee scheme(O(1t2)-accurate leapfrog time
integration) is

En+1
z,i, j = En

z,i, j +
1t

ε1x
δx Hn+1/2

y,i, j −
1t

ε1y
δy Hn+1/2

x,i, j ,

Hn+1/2
x,i, j−1/2 = Hn−1/2

x,i, j−1/2−
1t

µ1y
δyEn

z,i, j−1/2, (4)

Hn+1/2
y,i−1/2, j = Hn−1/2

y,i−1/2, j +
1t

µ1x
δx En

z,i−1/2, j ,

where

δxUi, j = Ui+1/2, j −Ui−1/2, j ,
(5)

δyUi, j = Ui, j+1/2−Ui, j+1/2.

Hereafter we shall refer to (4) and (5) as the Yee scheme.
In the fourth-order scheme [5] the spatial difference operators (5) are replaced by fourth-

order accurate stencils. For example, to compute a fourth-order accurate approximation of
the quantity1y ∂U

∂y |(i, j+1/2) we use

δyUi, j = 1

24
(Ui, j−1− 27Ui, j + 27Ui, j+1−Ui, j+2). (6)

The Yee scheme can be applied at all nodes in a bounded domain except at the first
and last where boundary conditions are to be imposed. However, the fourth-order stencil
requires numerical boundary conditions at the nodes next to an electric field boundary node.
To complete this scheme at the two interior grid points (one electric and one magnetic)
immediately next to the first and last electric field grid points of a bounded domain, we use
fourth- and third-order accurate one-sided approximations in order to globally approximate
the derivative. No physical boundary conditions are included at this stage. These one-sided
approximations are

∂U

∂yi,1/2
= 1

241y
(−22Ui,0+ 17Ui,1+ 9Ui,2− 5Ui,3+Ui,4),

∂U

∂yi,1
= 1

241y

(−23Ui,1/2+ 21Ui,3/2+ 3Ui,5/2−Ui,7/2
)
,

(7)
∂U

∂yi,N−1
= 1

241y

(
23Ui,N−1/2− 21Ui,N−3/2− 3Ui,N−5/2+Ui,N−7/2

)
,

∂U

∂yi,N−1/2
= 1

241y
(22Ui,N − 17Ui,N−1− 9Ui,N−2+ 5Ui,N−3−Ui,N−4),

for the derivative in thêy-direction with truncation errors711y4

1920
∂5U
∂y5 and1y3

24
∂4U
∂y4 , and simi-

larly for the derivative in thêx-direction. Consequently, electric field boundary conditions
can be imposed as in the Yee scheme. Labeling the scheme, which employs (6) in the
interior and (7) near the boundary, a 4− 3− 4− 3− 4 scheme (see [14] for similar nota-
tion), we have also tested alternative boundary treatments that result in 4− 4− 4− 4− 4,
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3− 4− 4− 4− 3, or 3− 3− 4− 3− 3 schemes; such schemes were rejected through
numerical experimentation as less accurate.

We next define

AH =



−23 21 3 −1 . . 0
1 −27 27 −1 . . 0
0 1 −27 27 −1 . 0
. . . . . .

0 . . 1 −27 27 −1
0 . . 1 −3 −21 23


, (8)

and

AE =



−22 17 9 −5 1 . 0
1 −27 27 −1 . . 0
0 1 −27 27 −1 . 0
. . . . . .

0 . . 1 −27 27 −1
0 . −1 5 −9 −17 22


, (9)

so the matrix form of the approximation to theŷ-derivative at the midpoint between grid
points, and at the grid points, is respectively

∂

∂y


Ui,1/2

Ui,3/2

.

.

Ui,N−1/2

 =
1

241y
AE


Ui,0

Ui,1

.

Ui,N−1

Ui,N

 ,

∂

∂y


Ui,1

Ui,2

.

.

Ui,N−1

 =
1

241y
AH


Ui,1/2

Ui,3/2

.

Ui,N−3/2

Ui,N−1/2

 ,

and similarly for the derivative in thêx-direction. With these definitions, the matrix form
of the discrete TM equations (3) is

[E Zi, j ]
n+1 = [E Zi, j ]

n+ 1t

24ε1x
AH
[
HYi+1/2, j

]n+1/2− 1t

24ε1y

[
H Xi, j+1/2

]n+1/2
At

H,[
H Xi, j+1/2

]n+1/2 = [H Xi, j+1/2
]n−1/2− 1t

24µ1y
[E Zi, j ]

nAt
E, (10)

[
HYi+1/2, j

]n+1/2 = [HYi+1/2, j
]n−1/2+ 1t

24µ1x
AE[E Zi, j ]

n.

Hereafter we shall refer to (10) as the explicit(2,4) scheme.
We now demonstrate that (10) is divergence-free for TM waves, i.e., that

∂

∂t
∇ · (µHx, µHy)

T = 0. (11)
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From the second and third equations in (10) it is easy to see that the following holds

(
1

241x
AE
[
(µH X)i, j+1/2

]+ 1

241y

[
(µHY)i+1/2, j

]
At

E

)n+1/2

−
(

1

241x
AE
[
(µH X)i, j+1/2

]+ 1

241y

[
(µHY)i+1/2, j

]
At

E

)n−1/2

= 0. (12)

This is the discrete form of (11) at spatial location(i + 1/2, j + 1/2) (the center of the
rectangular cell with corners at the nearest-neighbor electric nodes) and time leveln on the
grid since

1

241x
AE
[
(µH X)i, j+1/2

] = [∂(µH X)

∂x

]
i+1/2, j+1/2

+ O(1x4)

1

241y

[
(µHY)i+1/2, j

]
At

E =
[
∂(µHY)

∂y

]
i+1/2, j+1/2

+ O(1y4).

Hence, if the field is numerically divergence-free initially, i.e., the initial data satisfies (2),
it will remain so ever after. We have determined that (12) holds in numerical simulations to
within O(10−13). If the permeabilityµ is discontinuous, the derivation of the divergence-
free property differs. In that case we segment the domain into subdomains, and then (11)
holds in each region.

If the perfect conductor is located on a tangential magnetic field node, then a different
treatment is required as now a homogeneous Neumann condition,∂Htang

∂n = 0, holds on
such a node. We shall explain the necessary modifications using the one-dimensional case
involving HY and EZ; the extension to two and three dimensions follows along similar
lines. On the perfect conductor,∂HY

∂x
n+1/2

i=1/2
= 0 is the boundary condition to be imposed.

Now, the electric field node ati = 1 is viewed as a boundary node for which we must obtain
an update that takes into account the boundary condition ati = 1/2. To that effect we obtain
the required∂HY

∂x
n+1/2

i=1
by a fourth-order interpolation of the fluxes at neighboring electric

field nodes and at the boundary node

∂HY

∂x

n+1/2

i=1
= 16

35

∂HY

∂x

n+1/2

i=1/2
+ ∂HY

∂x

n+1/2

i=2
− 3

5

∂HY

∂x

n+1/2

i=3
+ 1

7

∂HY

∂x

n+1/2

i=4
.

Using the physical boundary condition ati = 1/2 (where the flux is known) this reduces to

∂HY

∂x

n+1/2

i=1
= ∂HY

∂x

n+1/2

i=2
− 3

5

∂HY

∂x

n+1/2

i=3
+ 1

7

∂HY

∂x

n+1/2

i=4
. (13)

We approximate∂HY
∂x

n+1/2

i=3,4
by using (6), and∂HY

∂x
n+1/2

i=2
by using the second formula in (7),

so the desired update ofE Z1 is effected with

E Zn+1
1 = E Zn

1 +
1t

ε

∂HY

∂x

n+1/2

i=1
. (14)

In Section 3.1 we show the necessary stability condition also holds for this case, and
provide a two-dimensional numerical test employing this procedure in Section 5.1.
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3.1. Stability

A standard Von Neumann analysis of (4) and (5) on an unbounded uniform Cartesian
grid with mesh sizeh results in the well-known CFL stability condition

1t√
min{ε · µ} ≤

h√
d
,

whered is the number of spatial dimensions [3]. The application of boundary conditions on
electric field grid points does not alter the stability condition. When dielectrics are present,
one first determines the maximumh for accuracy by using the max{ε · µ} over the domain
of interest and the maximum frequency to be resolved with a preset number of points
per wavelength; the stability condition then sets the maximum allowed time step for that
particularh.

A similar analysis for (4) and (6) on an unbounded uniform Cartesian grid with mesh
sizeh results in the CFL condition

1t√
min{ε · µ} ≤ 2

h

ρ∞
[5],

whereρ∞ is the spectral radius of the matrices used to compute spatial derivatives; for
the differentiation matrix scaled byh, it is ρ∞ = 7

3

√
d. In this paper we consider (10) for

d = 1, 2, 3, and the following eigenvalue analysis verifies that the same necessary condition
holds for stability over bounded domains; we do not prove herein that this condition is also
sufficient for stability.

First, we analyze the stability of thed = 1 semi-discrete versions of (10)(1t → 0 for a
fixed h 6= 0) on a bounded domain in order to determine whether the inclusion of the one-
sided differencing operators and the imposition of boundary conditions result in a stable
scheme. We will do so by neglecting the [H X] grid function, settingh = 1x, ε = µ = 1,
and considering the system

du
dt
= 1

h
M · u. (15)

The vectoru = {E Z0, E Z1, . . . , E ZN−1, E ZN, HY1/2, HY3/2, . . . , HYN−3/2, HYN−1/2}
is the solution on the grid, andM is the matrix composed of the difference operators
represented by (8) and (9). We will consider the case in whichM enforces homogeneous
Dirichlet boundary conditionsE Z0 = E ZN = 0 at the first and last (boundary) nodes of
the grid. Assumingu = eλt ũ, whereλ are the eigenvalues ofM , andũ is a complex-valued
constant vector, the spectral radius ofM , providedR{λ} = 0, will be ρM = max|={λ}|,
and the semi-discrete scheme will be stable. The fully discrete scheme, using staggered
Leapfrog time integration and including the caseε, µ 6= 1, will be stable when

1t√
min{ε · µ} ≤ 2

h

ρM
. (16)

We now show (16) is valid for a computational domain that is filled with a homogeneous
dielectric and is truncated with homogeneous Dirichlet boundary conditions on the electric
field. Figure 1 shows the spectral radius ofM as a function of the mesh size; the MATLAB
functioneig, with long format, was used to computeρM . We found thatR{λ} = O(10−16)
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FIG. 1. The spectral radiusρM as a function of mesh size for Dirichlet boundary conditions.

for all h. As h→ 0, ρM → ρ∞ from below, i.e., the explicit(2, 4) on a bounded domain is
stable for the same CFL number as in an unbounded domain.

Condition (16) has also been verified ford = 2 by proceeding as in the one-dimensional
case withu appropriately defined in terms ofE Z, H X, HY values on a two-dimensional
grid. Figure 2 shows information similar to that in Fig. 1 (we have not been able to consider

FIG. 2. Same as Fig. 1, ford = 2.
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FIG. 3. Same as Fig. 1, for the PEC imposed on a tangential Magnetic field node.

smallerh values because of computer memory restrictions), and indicates that in two di-
mensionsρM → 7

√
2/3 from below, i.e., the explicit(2, 4) on a bounded two-dimensional

domain is stable for the same CFL number as in an unbounded domain. It was found that
R{λ} = O(10−15) for all h considered. In three dimensions, we have verified numerically
(see last example in Section 5.1) thatρM → 7

√
3/3.

When the PEC boundary occurs on a tangential magnetic field node, the above analysis
indicates that the necessary stability condition (16) is still valid. Figure 3 shows the spectral
radius of the resultingM as a function of the mesh size. In this case we found thatR{λ} =
O(10−15) for h corresponding to 40− 1280 points per wavelength, except forh = 1/10
andh = 1/20, whereR{λ} = O(10−8) andR{λ} = O(10−9), respectively.

4. THE SCHEME IN AN INHOMOGENEOUS BOUNDED DIELECTRIC

Consider a two-dimensional computational domain over which the dielectric permittivity
is a piecewise constant function of the horizontal coordinate only, with the points of discon-
tinuity of the material property occurring on electric field grid points. Then, we are faced
with the problem of deriving finite difference expressions to correctly update the electric
field on those grid points. For the sake of exposition, letε = ε1 to the left of the interface,
andε = ε2 to the right, withµ = µ0 everywhere. Across such a dielectric interface, the
tangential components of the electromagnetic field,E Z andHY in this case, are continuous.
Further, the first-order derivative ofE Z is continuous, while that ofHY is discontinuous,
and second- and higher-order derivatives of both fields are discontinuous.
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To implement the Yee scheme on a dielectric interface we setεinterface= ε1+ε2
2 . This can

be shown to be the appropriate material property for the grid point of discontinuity, as
a local truncation error analysis indicates first-order accuracy in the mesh size; then, the
global second-order convergence rate of the scheme is not affected as it is also confirmed
by the numerical results. The implementation of discontinuous dielectric properties in the
explicit(2, 4) via a fourth-order explicit interpolation of the dielectric permittivity on electric
field nodes results, as our numerical experiments (Section 5.2) show, in a loss of two orders in
the convergence rate of the explicit(2, 4). The same convergence rate reduction is obtained
when the method outlined for the Yee scheme is employed to model an interface in the
explicit(2, 4).

An innovative approach to handle piecewise-constant dielectric properties for the Yee
scheme, when the discontinuities occur between grid points, is presented in [15, 16]. Herein,
we extend this approach to include such dielectric properties in the explicit(2, 4) scheme
as long as the discontinuities occur on electric field grid points. The numerical experi-
ments in Section 5 confirm a global fourth-order convergence rate for the scheme presented
below.

We present our approach for the problem of a vertical dielectric slab placed in a domain
bounded on all sides by a metal. We divide the computational domain into three subdomains;
two contain air, and the third one contains the lossless dielectric. Inside each subdomain,
the difference equations (10) are applied to update the solution. The Dirichlet condition
on the electric field is used to complete the scheme near the metal boundaries (see Section 3).
The dielectric interface is also treated as a boundary point for the scheme (10) in the adjacent
subdomains. Suppose those dielectric interfaces are located ati = I1 andi = I2, andε = ε2

for I1 < i < I2 while ε = ε1 for i > I2 andi < I1. We need to derive difference equations
to update the electric field on these boundaries (the dielectric interfaces). We assign each
interface node to belong to one of the two abutting subdomains, and require that we do
not difference across the jump in the material properties. In this particular case, we take
i = I1, I2 to be the boundary nodes of the subdomain that is filled with the dielectricε = ε2.
To that effect, we first approximateHY (which is continuous across the interface) ati = I1

andi = I2 by using the following fifth-order extrapolation with data from the subdomain
that does not contain the interface node:

HYn+1/2
I1, j = 315

128
HYn+1/2

I1−1/2, j −
105

32
HYn+1/2

I1−3/2, j +
189

64
HYn+1/2

I1−5/2, j

− 45

32
HYn+1/2

I1−7/2, j +
35

128
HYn+1/2

I1−9/2, j

HYn+1/2
I2, j = 315

128
HYn+1/2

I2+1/2, j −
105

32
HYn+1/2

I2+3/2, j +
189

64
HYn+1/2

I2+5/2, j

− 45

32
HYn+1/2

I2+7/2, j +
35

128
HYn+1/2

I2+9/2, j .

(17)

OnceHY is approximated on the interface (i.e., on the boundary node), we approximate
its x̂-derivative at that location using data from the subdomain that contains the interface as
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a boundary (i.e., we do not difference across interfaces) as follows:

1x
∂

∂x
HYn+1/2

I1, j = −1126

315
HYn+1/2

I1, j + 315

64
HYn+1/2

I1+1/2−
35

16
HYn+1/2

I1+3/2, j

+ 189

160
HYn+1/2

I1+5/2, j −
45

112
HYn+1/2

I1+7/2, j +
35

576
HYn+1/2

I1+9/2, j

1x
∂

∂x
HYn+1/2

I2, j = 1126

315
HYn+1/2

I2, j − 315

64
HYn+1/2

I2−1/2+
35

16
HYn+1/2

I2−3/2, j

− 189

160
HYn+1/2

I2−5/2, j +
45

112
HYn+1/2

I2−7/2, j −
35

576
HYn+1/2

I2−9/2, j .

(18)

Once ∂
∂x HYn+1/2

I1, j and ∂
∂x HYn+1/2

I2, j are calculated, we update the electric field on the interfaces
by evaluatingE Zn+1

I1, j andE Zn+1
I2, j in the following way, e.g., ati = I1:

E Zn+1
I1, j = E Zn

I1, j −
1t

ε2241y

(
H Xn+1/2

I1, j−3/2− 27H Xn+1/2
I1, j−1/2+ 27H Xn+1/2

I1, j+1/2− H Xn+1/2
I1, j+3/2

)
+ 1t

ε2

∂

∂x
HYn+1/2

I1, j . (19)

Similarly, ati = I2 to updateE Zn+1
I2, j .

For a given dielectric contrast we found that differencing inside the subdomain (while
extrapolating to the interface the field variable to be differenced using data from outside the
subdomain) with the smaller dielectric constant results in a slight improvement of the error.
Also, we observed that this improvement is lost for large contrast, and therefore concluded
that it does not, in general, matter which subdomain we choose inside which do difference.
This is because higher contrasts imply a larger loss of smoothness across the dielectric
interface and a consequent increase of the local error.

If the dielectric interface is located ati = I1+ 1/2, where a tangential magnetic field is
collocated, the treatment differs slightly from that given above. Now, EZ and HY exchange
roles. We first extrapolate EZ to the interface (using data outside the subdomain that contains
the interface)

E Zn
I1+1/2, j =

315

128
E Zn

I1, j −
105

32
E Zn

I1−1, j +
189

64
E Zn

I1−2, j

− 45

32
E Zn

I1−3, j +
35

128
E Zn

I1−4, j ,

and then approximate thex derivative of EZ at that location (using data from the subdomain
that contains the interface as a boundary)

1x
∂

∂x
E Zn

I1+1/2, j = −
1126

315
E Zn

I1+1/2, j +
315

64
E Zn

I1+1, j −
35

16
E Zn

I1+2, j

+ 189

160
E Zn

I1+3, j −
45

112
E Zn

I1+4, j +
35

576
E Zn

I1+5, j .

Finally, we update the magnetic field ati = I1+ 1/2 with

HYn+1/2
I1+1/2, j = HYn−1/2

I1+1/2, j +
1t

µ

∂

∂x
E Zn

I1+1/2, j .

We do not pursue this case any further in the present paper.
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4.1. Stability

A stability analysis is now given for the semi-discrete version of (10)(1t → 0 for a fixed
h 6= 0). Again, we consider a one-dimensional(d = 1) bounded domain separated in two
halves by a dielectric interface at the electric field grid pointI = Iint. We neglect the [H X]
grid function, seth = 1x, ε = µ = 1 for grid pointsi < Iint andε = ε2 for grid points
i ≥ I int, and consider the system

du
dt
= 1

h
Md · u, (20)

whereu = {E Z0, E Z1, . . . , E ZN−1, E ZN, HY1/2, HY3/2, . . . , HYN−3/2, HYN−1/2} is the
solution vector on the grid, andMd is the matrix composed of the difference opera-
tors represented by (8), (9), and (17)–(19). Again, we consider the case in whichM
enforces homogeneous Dirichlet boundary conditionsE Z0 = E ZN = 0 at the first and
last (boundary) nodes of the grid. As in Section 3.2, if the eigenvaluesλ of Md are
such thatR{λ} = 0, the spectral radius ofMd will be ρMd = max|={λ}|, and then the
semi-discrete scheme will be stable. Consequently, a necessary (again, not sufficient) sta-
bility condition for the fully discrete scheme (including the caseε, µ 6= 1) is (16) with
ρM = ρMd .

Figure 4 shows the spectral radius ofMd as a function of mesh sizeh, and of the con-
trastε = ε2/ε1. Again, we determined thatR{λ} = O(10−16) for all h andε of interest.

FIG. 4. The spectral radiusρM as a function of mesh size for the symmetric scheme with Dirichlet boundary
conditions and a dielectric interface(R{λ} = O(10−16)).
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However, as the figure shows, the maximum allowed CFL number is now smaller than
that obtained in Section 3.2 because the value ofρMd , whenh→ 0, depends onε and
can be greater thanρ∞ for someε. We note that for a givenε, ρMd again approaches
a limit from below ash→ 0. Therefore, in this case, we can only say that the inter-
face treatment is stable and, in general, requires a slight reduction of the maximum al-
lowed time step (for a givenh). This is not restrictive for the model scheme considered
herein as one would run it with a small CFL number in order to obtain fourth-order
accurate results. The stability condition for dielectrics has been verified numerically for
d = 1, 2.

The decision to approximate∂
∂x HYn+1/2

i, j , when the grid point(i, j ) is on a dielectric
interface, with a symmetric formula (symmetric in the sense that an equal number of grid
points to the left and right of an interface are to be used) was arrived at after some numerical
experimentation. We initially considered asymmetric formulas, and found that they are to
be avoided, as the asymmetry introduces a long-time instability for some values ofh. For
example, Fig. 5 shows the maximum and minimum values ofR{λ} as a function of the mesh
sizeh whenε = 4 (similar results were obtained for other values of the dielectric contrast).
Now, R{λ} = 0 for someh. A computational test with anh for which R{λ} ≈ 3× 10−3

was unstable after 800 time units. Based on the eigenvalue analysis, the time to instability
for this example was approximately 333 time units; we attribute the observed delay to the
presence of eigenvalues withR{λ} < 0 of approximately the same magnitude at the given
h andε.

FIG. 5. R{λ} as a function of mesh size for the non-symmetric scheme with Dirichlet boundary conditions
and a dielectric interface withε = 4.
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5. COMPUTATIONAL RESULTS

This section provides numerical tests of the boundary/interface treatment for the
explicit(2, 4). At the same time we compare the results to those obtained with the Yee
scheme, and, when available, to those obtained with the compact-implicit Ty(2, 4) scheme
[10]. All three schemes are advanced in time by theO(1t2)-accurate staggered leapfrog
method, and a uniform grid spacing is employed. For all computations (except one, which
models the transverse electric case) we chooseµ = 1 everywhere, andε = 1 for grid points
in empty space, whileε > 1 for grid points inside a dielectric medium. In all our tests, metal
boundaries and dielectric interfaces occur on electric field grid points. When presented, the
error is measured against the exact solution forEz in the L2 norm over space (except in
example two in Section 5.3, where the error is measured in theL∞ norm over a plane
curve). We also provide tables of the error in theL∞ norm over a fixed time interval for
the purpose of deducing convergence rates. For the examples posed in an open domain,
we restrict the time interval over which we measure the error so that our computed results
are not contaminated by reflections from the far-field boundary treatment. All examples in
Sections 5.1–5.3 were coded in MATLAB.

5.1. Closed Homogeneous Domains

We begin with an example of engineering interest. Because of the ease of meshing
geometries that conform to a Cartesian mesh, the Yee scheme is often used to compute the
resonant frequencies of structures in microwave circuitry, e.g., cavities. This is accomplished
by exciting a spatial point in the cavity (herein we do so with a Kronecker delta-function
in space and time), and recording the time-domain solution at another location for a certain
amount of time units. The resonant frequencies of the cavity (up to the frequency for which
there is enough resolution) will then be the locations of the peaks of the magnitude of
the Fourier transform of the recorded time-domain solution. In our example, the obtained
spectra were individually scaled for graphical purposes. We applied the Yee scheme to
compute the first five resonances of a [0, 1]× [0, 1] cavity with PEC walls(Ez = 0 there).
With1t = 2h/3, the results converged afterh = 1/40. The decision to consider a result as
“converged” was taken by running the Yee scheme forh = 1/10, 1/20, 1/40, 1/80, 1/160
and finding the resolution past which a refinement of the grid did not affect the positions
of the first five peaks of the spectrum of the cavity. We found theh = 1/40 result to have
“converged;” that required running theh = 1/80 case also. The number of time steps for
h = 1/40 andh = 1/80 were 4096 and 8192, respectively. We then run the explicit(2,4) for
the sameh as the Yee scheme but with1t = h2, and theh = 1/10 computation required
6826 time steps to record the solution in the same time interval as for the Yee scheme. We
found the locations of the first five resonances of the cavity computed withh = 1/10 did not
shift with higher resolution. Figure 6 indicates that using the explicit(2, 4) scheme results in
a 16-fold savings in memory while requiring only 2/3 more time steps than the Yee scheme.

Using the geometry of the previous example we now consider the case in which PEC is
located on tangential magnetic field nodes; now∂Hx/∂y = 0 andx = 0, 1 and∂Hy/∂x = 0
at y = 0, 1. The scheme is again (10) but with (8) and (9) altered to implement the bound-
ary closure described by (13) and (14). Figure 7 shows the actual logarithmic errors as
a function of time measured against an exact solution and indicates a slightly better than
fourth-order convergence rate over the time interval considered.
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FIG. 6. The first 5 resonances of a square cavity with PEC walls.

FIG. 7. log10(‖error‖L2) for the explicit(2, 4) scheme when the PEC is located on tangential Magentic field
nodes.
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We next consider single-mode propagation in a rectangular cross-section waveguide with
perfectly conducting walls. We prescribe initial and boundary conditions,

Ez(x, y, 0) = sin(3πx) sin(4πy),

Hy

(
x, y,

1t

2

)
= −3

5
sin

(
3πx − 5π1t

2

)
sin(4πy),

Hx

(
x, y,

1t

2

)
= −4

5
cos

(
3πx − 5π1t

2

)
sin(4πy),

Ez(0, y, t) = −sin(5π t) sin(4πy),

Ez(1, y, t) = sin(3π − 5π t) sin(4πy),

Ez(x, 0, t) = 0,

Ez(x, 1, t) = 0,

so the exact solution is

Ez(x, y, t) = sin(3πx − 5π t) sin(4πy).

The discretization and the computational time interval is given in Table I where the conver-
gence rates of the schemes are summarized; as the mesh is refined, the Yee scheme yields
second order accuracy, while the explicit(2, 4) and Ty(2, 4) schemes yield between fourth-
and fifth-order accuracy which converges to fourth-order on very fine meshes.

Finally, we test the boundary treatment by solving a three-dimensional problem over a
[0, 1/2]× [0, 1/4]× [0, 1/2] domain. An exact solution is

Hx = sin(ωt) sin(Ax+ By+ Cz),

Hy = sin(ωt) sin(Ax+ By+ Cz),

Hz = sin(ωt) sin(Ax+ By+ Cz),

Ex = C − B

ω
cos(ωt) cos(Ax+ By+ Cz),

TABLE I

The Maximal Errors in L2 Norm; Two Dimensions

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 Rate

explicit(2, 4) 1
20

1
400

0.014

explicit(2, 4) 1
40

1
1600

1.9316× 10−4 6.2

explicit(2, 4) 1
80

1
3200

6.48× 10−6 4.896

Ty(2, 4) 1
20

1
400

0.0242

Ty(2, 4) 1
40

1
1440

7.9304× 10−5 8.15

Ty(2, 4) 1
80

1
3440

2.329× 10−6 5.089

Yee 1
20

1
30

0.1889

Yee 1
40

1
60

0.0476 1.9885

Yee 1
80

1
120

0.0119 2.0032
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TABLE II

The Maximal Errors in L2 Norm; Three Dimensions

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 Rate

explicit(2, 4) 1
20

1
400

5.375× 10−4

explicit(2, 4) 1
40

1
1600

2.184× 10−5 4.621

explicit(2, 4) 1
80

1
3200

9.071× 10−7 4.590

Ty(2, 4) 1
20

1
400

3.621× 10−4

Ty(2, 4) 1
40

1
1600

1.144× 10−5 4.983

Ty(2, 4) 1
80

1
6400

3.5621× 10−7 5.005

Yee 1
20

1
35

0.0027

Yee 1
40

1
70

7.3× 10−4 1.9028

Yee 1
80

1
140

1.8252× 10−4 2.0015

Ey = A− C

ω
cos(ωt) cos(Ax+ By+ Cz),

Ez = B− A

ω
cos(ωt) cos(Ax+ By+ Cz),

whereω2 = A2+ B2+ C2 and A+ B+ C = 0 with A = π , B = −2π , C = π , and
ω = √6π . Table II shows that the (2, 4) schemes outperform the Yee scheme by being
more accurate, and by exhibiting higher-order convergence rates. We found the scheme is
unstable forCFL> 7

√
3/3.

5.2. Closed Inhomogeneous Domains

Let a domain which contains air and a lossless dielectric with a relative permittiv-
ity of ε2 be as shown in Fig. 8. For the Yee scheme we will use the arithmetic av-
erage of the permittivity on electric field nodes on the interface, while for the (2, 4)
schemes we will first use a fourth-order interpolation forε and then our new treatment
given in Section 4. An exact solution for time-varying electromagntic fields in such a

FIG. 8. The computational domain.
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TABLE III

The Maximal Errors in L2 Norm with ε2 = 2

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 Rate

explicit(2, 4) 1
20

1
400

0.0019

explicit(2, 4) 1
40

1
1600

5.7585× 10−4 1.715

explicit (2, 4) 1
80

1
3200

1.4909× 10−4 1.94

Ty(2, 4) 1
20

1
400

0.00196

Ty(2, 4) 1
40

1
1600

5.7721× 10−4 1.763

Ty(2, 4) 1
80

1
6400

1.4995× 10−4 1.948

Yee 1
20

1
30

0.0363

Yee 1
40

1
60

0.0089 2.028

Yee 1
80

1
120

0.00222 2.003

domain is

Ez =
{

2 cos
(

2π
3 X
)

cos(ωt) sin(KyY) |X| ≤ 1
2 0≤ Y ≤ 1

exp
(
π
√

3
3

)
exp
(− 2π

√
3

3 |X|
)

cos(ωt) sin(KyY) |X| ≥ 1
2 0≤ Y ≤ 1

Hy =


−√ε2− ε1 sin

(
2π
3 X
)

sin(ωt) sin(KyY) |X| ≤ 1
2 0≤ Y ≤ 1

−
√

3(ε2− ε1)

2 exp
(
π
√

3
3

)
exp
(− 2π

√
3

3 X
)

sin(ωt) sin(KyY) X ≥ 1
2 0≤ Y ≤ 1

√
3(ε2− ε1)

2 exp
(
π
√

3
3

)
exp
(

2π
√

3
3 X

)
sin(ωt) sin(KyY) X ≤ − 1

2 0≤ Y ≤ 1

Hx =
{−√ε1+ 3ε2 cos

(
2π
3 X
)

sin(ωt) cos(KyY) |X| ≤ 1
2 0≤ Y ≤ 1

−
√
ε1+ 3ε2

2 exp
(
π
√

3
3

)
exp
(− 2π

√
3

3 |X|
)

sin(ωt) cos(KyY) |X| ≥ 1
2 0≤ Y ≤ 1,

whereKy = 2π
3

√
ε1+ 3ε2
ε2− ε1

andω = 4π
3
√
ε2− ε1

. We will compare the schemes herein forε1 = 1
and ε2 = 2, 4, using the same mesh sizes and time steps as before. Tables III and IV
indicate the expected reduction of the convergence rate for the (2, 4) schemes, and the
expected second-order convergence rate for the Yee scheme. Although we obtain only
second-order convergence for the (2, 4) schemes, the results are better than those obtained

TABLE IV

The Maximal Errors in L2 Norm with ε2 = 4

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 Rate

explicit(2, 4) 1
20

1
400

0.0014

explicit(2, 4) 1
40

1
1600

3.765× 10−4 1.894

explicit(2, 4) 1
80

1
3200

9.7748× 10−5 1.945

Ty(2, 4) 1
20

1
400

0.00139

Ty(2, 4) 1
40

1
1600

3.756× 10−4 1.887

Ty(2, 4) 1
80

1
6400

9.7579× 10−5 1.944

Yee 1
20

1
30

0.0095

Yee 1
40

1
60

0.00237 2.003

Yee 1
80

1
120

5.9442× 10−4 1.9953
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TABLE V

The Maximal Errors in L2 Norm with ε2 = 2

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 Rate

explicit(2, 4) 1
20

1
400

3.1868× 10−4

explicit(2, 4) 1
40

1
1600

4.9822× 10−6 5.999

explicit(2, 4) 1
80

1
3200

2.6532× 10−7 4.231

Ty(2, 4) 1
20

1
400

1.978× 10−4

Ty(2, 4) 1
40

1
1600

2.2368× 10−6 6.466

Ty(2, 4) 1
80

1
6400

3.7520× 10−7 2.575

Yee 1
20

1
30

0.0363

Yee 1
40

1
60

0.0089 2.028

Yee 1
80

1
120

0.00222 2.003

with the Yee scheme. However, we are using a fourth-order scheme, and the loss of two
orders of convergence in the presence of heterogeneous dielectrics is undesirable.

We repeat the previous example with a code that implements the new interface treatment
presented in Section 4. Tables V and VI summarize the convergence rates, and confirm the
expected recovery of global fourth-order convergence for the (2, 4) schemes.

Next, numerical evidence is presented of long-time stability of our approach by consider-
ing a problem in which a dielectric of relative permittivityε2, occupying the spatial region
[0, 1/2]× [0, 1], is inserted in a PEC-bounded [0, 5/4]× [0, 1] domain. An exact solution
in this case is

Ez =
{

sin(a1X) sin(ωt) sin(bY) 0≤ X ≤ 1
2 0≤ Y ≤ 1

cos(a2X) sin(ωt) sin(bY) 1
2 ≤ X ≤ 5

4 0≤ Y ≤ 1

Hy =
{− a1

ω
cos(a1X) cos(ωt) sin(bY) 0≤ X ≤ 1

2 0≤ Y ≤ 1

a2
ω

cos(a2X) cos(ωt) sin(bY) 1
2 ≤ X ≤ 5

4 0≤ Y ≤ 1

Hx =
{ b
ω

sin(a1X) cos(ωt) cos(bY) 0≤ X ≤ 1
2 0≤ Y ≤ 1

b
ω

sin(a2X) cos(ωt) cos(bY) 1
2 ≤ X ≤ 5

4 0≤ Y ≤ 1,

TABLE VI

The Maximal Errors in L2 Norm with ε2 = 4

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 Rate

explicit(2, 4) 1
20

1
400

6.9209× 10−5

explicit(2, 4) 1
40

1
1600

3.5383× 10−6 4.289
explicit(2,4) 1

80
1

3200
2.0045× 10−7 4.147

Ty(2, 4) 1
20

1
400

2.6958× 10−5

Ty(2, 4) 1
40

1
1600

1.2869× 10−6 4.3887
Ty(2, 4) 1

80
1

6400
3.2753× 10−8 5.291

Yee 1
20

1
30

0.0095
Yee 1

40
1
60

0.00237 2.003
Yee 1

80
1

120
5.9442× 10−4 1.9953
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FIG. 9. log10(‖error‖L2) for the explicit(2, 4) scheme.

wherea2
1 + b2 = ε2ω

2, a2
2 + b2 = ε1ω

2, sin( a1
2 ) = cos( a2

2 ), cos( 5a2
4 ) = 0, and we choose

ε1 = 1,ε2 = 2,a1 = 3π , a2 = 2π , b = π , andω = √5π . On the air/dielectric interface we
employed the new treatment. To verify stability for a long time, we run this problem for 27
time units, withh = 1/20, 1/40, 1/80, 1/160, 1/320. In Fig. 9 we draw the corresponding
errors as a function of time. Table VII shows the scheme remains stable and fourth-order
accurate over a long-time interval.

Although in this paper we consider only the TM polarization, the applicability of our
approach to the transverse electric (TE) case with a piecewise-constantε (fixedµ) can be
demonstrated by considering the TM equations with a piecewise-constantµ and a fixed
ε. To that end, we coat a perfect conductor with a magnetic dielectric of thickness1

2 and

TABLE VII

The Maximal Errors in L2 Norm with ε2 = 2

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 27 Rate

explicit(2, 4) 1
20

1
400

0.0101
explicit(2, 4) 1

40
1

1600
6.1264× 10−4 4.4815

explicit(2, 4) 1
80

1
3200

2.7431× 10−5 4.0428
explicit(2, 4) 1

160
1

3200
1.9041× 10−6 3.848

explicit(2, 4) 1
320

1
3200

1.2522× 10−7 3.926
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TABLE VIII

The Maximal Errors in L2 Norm with µ2 = 2

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 Rate

explicit(2, 4) 1
20

1
400

0.0021
explicit(2, 4) 1

40
1

1600
1.4010× 10−4 3.9059

explicit(2, 4) 1
80

1
3200

5.2597× 10−6 4.7353

relative permeabilityµ2 = 2(µ1 = 1), using the geometry of the previous example. We
used our interface treatment presented in Section 4, and placed the magnetic interface on
an electric node. Table VIII summarizes the convergence rate and confirms our scheme’s
fourth-order accuracy and stability.

5.3. Open Domains

We consider a monochromatic isotropic point source of wavelength 0.25, that is switched
on at t = 0 and radiates in front of an infinite perfectly conducting surface. The point
source is modeled by adding a term representing a currentIz(t) = 0.01 sin(8π t)H(t) at
rs = (x, y) = ( 1

4,
1
4), where H(t) denotes the Heaviside unit-step function. For such a

source, the radiated field is the solution of

∂2
x Ez+ ∂2

y Ez− ∂2
t Ez = ∂t Iz(t)δ

(
x − 1

4
, y− 1

4

)
. (21)

The solution consists of rotationally symmetric outgoing waves, and is given by

Ez(r, t) = − 1

2π

∫ ∞
0

∂t Iz(t −
√
|r − rs|2+ ξ2))√

|r − rs|2+ ξ2
dξ.

The computational domain is [0, 1
2] × [0, 1

2], and the boundary condition is

Ez(1/2, y, t) = 0. (22)

Because the bounding plane is infinite, the exact solution in the region of interest can
be constructed by using the exact solution for (21) and the method of images, with the
image source of negative strength at location( 3

4,
1
4). For the Yee scheme we chooseh =

1
40,1t = 2h

3 , while for the explicit(2, 4) scheme we chooseh = 1
40,1t = h2. Figures 10–

12, respectively, show the error inL2 norm, and contour comparisons of the exact and
numerical solutions. Both schemes live up to their convergence rate over domains that
exclude the source region.

Our next two examples are presented in order to exemplify the type of problems that
remain to be addressed. First, the source of the previous example is now considered in the
presence of an inclined(φ = π/8 with respect to the horizontal) perfectly conducting plane.
The perfect conductor is staircased so that the metal boundary falls on electric field grid
points, and we measure the error in theL1 norm along the dashed line drawn in Fig. 13.
Figures 14–16 show the obtained error forh = 1/20,h = 1/40, andh = 1/80. In this case,
both the Yee and explicit(2, 4) schemes are second-order convergent as seen in Table IX.
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FIG. 10. ‖error‖L2 for the mirror problem with boundary condition (22).

FIG. 11. Solution contours obtained with the Yee scheme (−−), and the exact solution (−) at t = 5.
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FIG. 12. Solution contours obtained with the explicit(2, 4) scheme (−−), and the exact solution (−) at t = 5.

This is because the local error for both schemes near the inclined plane is only first-order in
the mesh size because of the artificial corners introduced by the staircasing. Figure 15 shows
that the Ty(2, 4) schemes is unstable in this situation, whereas the Yee and explicit(2, 4)
schemes are stable. We note here that the com Ty(2, 4) scheme [11] is stable in this situ-
ation.

Our final example involves an infinitesimally thin PEC strip illuminated by a point source
as shown in Fig. 17. We implemented the dimensional form of the equations, and the spatial
extend of the signal produced by the source (1.2 m) is comparable to the width of the strip
(2 m). The scattered field, obtained by computing the total and incident fields and then
subtracting them, was computed at locations 1 and 2 as shown in Fig. 17. Although the

TABLE IX

The Maximal Errors in L2 Norm for the Inclined PEC Mirror

Scheme h 1t Max(‖error‖L2) 1≤ t ≤ 4 Rate

explicit(2, 4) 1
20

1
400

0.0165
explicit(2, 4) 1

40
1

1600
0.0023 2.8428

explicit(2, 4) 1
80

1
3200

4.2644× 10−4 2.4312
Yee 1

20
1
30

0.0359
Yee 1

40
1
60

0.0034 3.4004
Yee 1

80
1

120
4.7338× 10−4 2.8445
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FIG. 13. Location of the grid points on which the error is measured.

FIG. 14. ‖error‖L1 as a function of time for the Yee and explicit(2, 4) schemes;h = 1/20.
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FIG. 15. ‖error‖L1 as a function of time for the Yee, explicit(2, 4), and Ty(2, 4) schemes;h = 1/40.

FIG. 16. ‖error‖L1 as a function of time for the Yee and explicit(2, 4) schemes;h = 1/80.
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FIG. 17. Geometry of PEC strip scattering problem.

analytical solution is difficult to evaluate, we exploit the fact that the horizontal component
of the scattered magnetic field is identically equal to zero outside the support of the strip
[19] on the dashed line passing through location 2 in order to evaluate the performance
of the high-order scheme. Figures 18 and 19 indicate that at location 1 (away from the
strip) the high-order scheme produces the result obtained with the Yee scheme but with a
four-times coarser grid. At the same resolution, the schemes do not completely agree (see
detail in Fig. 19). At location 2 we find the fourth-order scheme gives a nonzero horizontal
component for the scattered magnetic field (Fig. 20) which we determined to be first-order
convergent to zero; the Yee scheme for the infinitesimally thin strip gives values consistent

FIG. 18. Comparison of scatteredEz field at location 1.
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FIG. 19. Detail from Fig. 18.

FIG. 20. ScatteredHx component at location 2 for the explicit(2, 4) scheme.
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FIG. 21. ScatteredHx component at location 2 for the Yee scheme with a 2h-thick PEC strip.

with the analytical result. We conjecture that the numerical boundary treatment surrounding
the infinitesimally thin PEC strip (on whichE Z = 0 is imposed with our approach) endows
the sharp edge with an effective roundness. It is known that scattering increases when an
edge is blunted [20]. We then applied the Yee scheme to the same problem but with a strip
that is 2h thick (two rows of nodes where(Ez = 0); the resemblance of the obtained result
(Fig. 21) to that in Fig. 20 is offered as confirmation of our assertion.

5.4. Relative Computational Cost

We now compare the efficiency of the (2, 4) schemes to that of the Yee scheme by
considering an empty [0, 1]× [0, 1] cavity with PEC walls excited by initial conditions.
For the (2, 4) schemes we use a uniform grid spacing withh = 1x = 1y = 1

30. For the Yee
scheme we also use a uniform grid spacing, but withh = 1x = 1y = 1

240. We chose these
mesh sizes in order to obtain the same error between the exactEz and the approximateEz in
L2 norm. The comparison is shown in Table X. The programs were written in FORTRAN

TABLE X

CPU-Time Comparison for a Fixed Error

Scheme h 1t Max(‖error‖L2) 0≤ t ≤ 10 CPU—time

explicit(2, 4) 1
30

1
900

1.99× 10−3 0.9 sec
Ty(2, 4) 1

30
1

900
1.25× 10−3 5.7 sec

Yee 1
240

1
360

1.31× 10−3 91 sec
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and were run on a Digital 600 au Alpha workstation. We observe that the CPU time needed
to achieve the same accuracy with the Yee scheme is more than 11 times larger than that
required by the Ty(2, 4) scheme, and 91 times larger than that required by the explicit(2,
4) scheme. Note the time savings is realized despite the smaller time step required by the
(2, 4) schemes.

6. CONCLUSION

We presented stable finite difference operators to implement boundary/interface condi-
tions in a fourth-order accurate extension of the Yee scheme. Numerical tests confirmed
that the convergence rate exhibited by the high-order scheme in the absence of boundaries
is preserved in their presence; fourth-order convergence is also obtained in the presence of
discontinuous electric and magnetic dielectric properties.

The results obtained in the last two examples of Section 5.3 indicate that both the boundary
staircasing and the presence of geometric singularities (e.g., knife-edge) adversely affect
the convergence rate. These issues are the topic of our ongoing work.
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